深度学习-李沐-第十二节-多GPU训练
多GPU训练
方法
第一种方法,在多个GPU之间拆分网络。 也就是说,每个GPU将流入特定层的数据作为输入,跨多个后续层对数据进行处理,然后将数据发送到下一个GPU。 与单个GPU所能处理的数据相比,我们可以用更大的网络处理数据。 此外,每个GPU占用的显存(memory footprint)可以得到很好的控制,虽然它只是整个网络显存的一小部分。
第二种方法,拆分层内的工作。 例如,将问题分散到4个GPU,每个GPU生成16个通道的数据,而不是在单个GPU上计算64个通道。 对于全连接的层,同样可以拆分输出单元的数量。
第三种方法,跨多个GPU对数据进行拆分。 这种方式下,所有GPU尽管有不同的观测结果,但是执行着相同类型的工作。 在完成每个小批量数据的训练之后,梯度在GPU上聚合。 这种方法最简单,并可以应用于任何情况,同步只需要在每个小批量数据处理之后进行。 也就是说,当其他梯度参数仍在计算时,完成计算的梯度参数就可以开始交换。 而且,GPU的数量越多,小批量包含的数据量就越大,从而就能提高训练效率。 但是,添加更多的GPU并不能让我们训练更大的模型。
数据并行性
简洁实现
import torch
from torch import nn
from d2l import torch as d2l
#@save
def resnet18(num_classes, in_channels=1):
"""稍加修改的ResNet-18模型"""
def resnet_block(in_channels, out_channels, num_residuals,
first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(d2l.Residual(in_channels, out_channels,
use_1x1conv=True, strides=2))
else:
blk.append(d2l.Residual(out_channels, out_channels))
return nn.Sequential(*blk)
# 该模型使用了更小的卷积核、步长和填充,而且删除了最大汇聚层
net = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU())
net.add_module("resnet_block1", resnet_block(
64, 64, 2, first_block=True))
net.add_module("resnet_block2", resnet_block(64, 128, 2))
net.add_module("resnet_block3", resnet_block(128, 256, 2))
net.add_module("resnet_block4", resnet_block(256, 512, 2))
net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
net.add_module("fc", nn.Sequential(nn.Flatten(),
nn.Linear(512, num_classes)))
return net
net = resnet18(10)
# 获取GPU列表
devices = d2l.try_all_gpus()
# 我们将在训练代码实现中初始化网络
def train(net, num_gpus, batch_size, lr):
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
devices = [d2l.try_gpu(i) for i in range(num_gpus)]
def init_weights(m):
if type(m) in [nn.Linear, nn.Conv2d]:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights)
# 在多个GPU上设置模型
net = nn.DataParallel(net, device_ids=devices)
trainer = torch.optim.SGD(net.parameters(), lr)
loss = nn.CrossEntropyLoss()
timer, num_epochs = d2l.Timer(), 10
animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
for epoch in range(num_epochs):
net.train()
timer.start()
for X, y in train_iter:
trainer.zero_grad()
X, y = X.to(devices[0]), y.to(devices[0])
l = loss(net(X), y)
l.backward()
trainer.step()
timer.stop()
animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(net, test_iter),))
print(f'测试精度:{animator.Y[0][-1]:.2f},{timer.avg():.1f}秒/轮,'
f'在{str(devices)}')
train(net, num_gpus=1, batch_size=256, lr=0.1)
train(net, num_gpus=2, batch_size=512, lr=0.2)
小结
有多种方法可以在多个GPU上拆分深度网络的训练。拆分可以在层之间、跨层或跨数据上实现。前两者需要对数据传输过程进行严格编排,而最后一种则是最简单的策略。
数据并行训练本身是不复杂的,它通过增加有效的小批量数据量的大小提高了训练效率。
在数据并行中,数据需要跨多个GPU拆分,其中每个GPU执行自己的前向传播和反向传播,随后所有的梯度被聚合为一,之后聚合结果向所有的GPU广播。
小批量数据量更大时,学习率也需要稍微提高一些。
- 神经网络可以在(可找到数据的)单GPU上进行自动评估。
- 优化算法在多个GPU上自动聚合。
- 每台设备上的网络需要先初始化,然后再尝试访问该设备上的参数,否则会遇到错误。